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Abstract 

In this research, a physical identification procedure is developed to investigate the dynamic 

characteristics of a mid-story isolation building equipped with lead-rubber-bearings (LRBs). The 

primary structure is assumed to be linear on account of substantial reduction of seismic forces due to 

the installation of LRBs for which a bilinear hysteretic model is considered. The hysteretic model is 

in turn characterized by a backbone curve by which the multi-valued restoring force is transformed 

into a single-valued function. With the introduction of backbone curves, the system identification 

analysis of inelastic structures is significantly simplified. The proposed algorithm extracts 

individually the physical parameters of each floor of the primary structure and isolation device that 

are considered useful information in the structural health monitoring. A numerical example is 

conducted to demonstrate the feasibility of using the proposed technique for physical parameter 

identification of partially inelastic mid-story buildings 

Keywords：Mid-story isolation building, Physical-parameter identification, Backbone curves, Bilinear 

hysteretic model, Structural health monitoring. 

 

摘要 

 本研究旨在發展一物理識別過程以識別出中間樓層使用鉛心橡皮支承墊隔震建築物之動態特性。

主結構體之動態反應由於鉛心橡皮支承墊的吸能效果將大幅降低，故可假設為線性，而鉛心橡皮支承

墊之動態行為則以雙線性遲滯模型模擬之。此遲滯模型將以背骨曲線反映其特徵，藉此原為多值函數

之回復力將轉換成單值函數，如此將可大幅簡化非彈性結構之系統識別分析。本文所提之識別過程，

可識別出主結構體每一樓層與隔震裝置之物理參數，這些參數對結構健康監測將提供相當有用之訊

息。最後藉由數值範例分析，說明本文所提之方法對部分非彈性中間層隔震建築物理參數識別的可行

性。 

關鍵字：中間樓層隔震建築物、物理參數識別、背骨曲線、雙線性遲滯模型、結構健康監測 
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1. Introduction 

Seismic base isolation is an effective means of 

damage-proof of building structures against strong 

earthquakes. The idea of base isolation is to lengthen 

the fundamental period of the structures so as to 

avoid resonance with the predominant frequency 

contents of the earthquakes. Thus, the seismic 

responses of a base-isolated building can be 

significantly reduced in comparison with its 

non-isolated counterpart. Various base isolation 

systems have been extensively studied both 

analytically and experimentally since the early 1970s 

[1-7], and they have been widely adopted all over 

the world nowadays. Among others, the lead-rubber 

bearing (LRB) has been the most popular base 

isolation system adopted for practical 

implementation in New Zealand, Japan, the United 

States, Italy, China, and Taiwan [8-10]. Recently, the 

base isolation technique has been considered even 

for earthquake protection of tall buildings such as 

the 32-story Los Angeles City Halls, 18-story 

Oakland City Hall, and numerous other projects in 

Japan [11, 12]. Over the last decade, design 

guidelines and codes with the ordinances of base 

isolated buildings have been developed for 

engineering practice. They include the Uniform 

Building Code (UBC), International Building Code 

(IBC) and China Design Code for Aseismic 

Buildings (CDCAB) [13-15]. 

System identification methods are adopted to 

estimate structural parameters, including isolation 

system, according to the recorded responses of the 

structures with or without input disturbance 

information. Although various dynamic testing 

methods have been developed for system 

identification purposes, it is not practical to identify 

the system parameters of a massive civil engineering 

structure through artificial loading tests of any form. 

However, seismic structural responses recorded 

during earthquakes provide insight at a modest cost 

into the structural behavior and dynamic 

characteristics of targets. Nagarajaiah and Sun [16] 

investigated the seismic performance of a 

base-isolated hospital building on the campus of the 

University of Southern California (USC). Using a 

bilinear model to represent the base isolation system, 

their study indicated that the identified responses 

exhibited favorable agreement with the observed 

data. The seismic isolation performance of the Fire 

Command and Control (FCC) building in Los 

Angeles was further explored by Nagarajaiah and 

Sun [17]. To characterize the dynamic properties of 

structural systems under impact loading, a 

two-dimensional analytical model with an impact 

spring-dashpot was proposed. Moreover, a 

three-degree-of-freedom analytical model accounting 

for the effects of eccentric impact loading was also 

developed to estimate the parameters of a 

torsion-coupling (TC) base-isolated building. The 

parameters identified from the seismic responses 

were closely related to the analytical model. 

Accordingly, the seismic performance of the 

base-isolated FCC building during the Northridge 

earthquake was proved to be satisfactory. 

Nagarajaiah and Dharap [18] also developed a new 

approach for the system identification of 

base-isolated buildings. A least-squares technique 

with time segments was proposed for the 

identification of piecewise linear systems. A series of 

equivalent linear system parameters was identified 

from segment to segment. A reduced-order observer 

was employed in the absence of full-state 

measurements to estimate the unmeasured states and 
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initial conditions at each time segment. The evolving 

equivalent linear dynamic properties of the USC 

hospital building during the Northridge earthquake 

were determined using the proposed technique. The 

changes in system parameters, such as the 

frequencies and damping ratios, caused by the 

inelastic behavior of the LRBs were reliably 

estimated. Nagarajaiah and Li [19] conducted a 

system identification of the FCC building by using 

the same technique. Huang et al. [20] introduced a 

bilinear backbone curve to represent the pre-yielding 

and post-yielding stiffness of the isolators, thus 

converting the complex nonlinear problem into a 

piecewise linear one. Wang et al. [21] assessed the 

damage of the seismic isolators of the TC structures 

with various damage indices. The results showed 

that the proposed indices are capable of localizing 

damaged isolators. 

In this paper, a simplified system identification 

process is developed to investigate the dynamic 

characteristics of a mid-story isolation building 

equipped with lead-rubber-bearings (LRBs). The 

superstructure and substructure are assumed to be 

linear on account of substantial reduction of seismic 

forces due to the installation of LRBs for which a 

bilinear hysteretic model is considered. The 

hysteretic model is in turn characterized by a 

backbone curve by which the multi-valued restoring 

force is transformed into a single-valued function. 

With the introduction of backbone curves, the system 

identification analysis of inelastic structures is 

simplified to a large extent. The proposed algorithm 

extracts individually the physical parameters of each 

floor and the isolation layer that are considered 

useful information in the structural health monitoring. 

A numerical example is conducted to demonstrate 

the feasibility of using the proposed technique for 

physical parameter identification of partially inelastic 

mid-story isolation buildings. 

 

2. Motion Equation 

Consider a linear multistory shear type structure is 

installed an isolation layer with lead-rubber bearings 

(LRBs) between the 1i -th and 1i -th floors, as 

shown in Fig.1. The superstructure and substructure 

are assumed to be linear on account of the reduction 

in seismic forces due to the installation of isolation 

layer. Accordingly, the system equation of motion 

can be expressed as 

     

(a) Superstructure: 
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Fig.1 Mid-story isolation building 
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(b)Isolation layer 
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(c)Substructure 
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in which jm , jx  and jR  are the mass, 

displacement and restoring force of the j-th floor, 

respectively; isom , isox  and isor  are the mass, 

displacement and restoring force of the isolation 

layer; and gx  is the ground acceleration. The 

restoring forces of the superstructure and basement 

are respectively written as 
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where jC  and jK  represent the damping 

coefficient and stiffness of columns of the j-th floor, 

respectively, while 
isoc  is the coefficient of viscous 

damping and 
isoh  is a nonlinear function to be 

defined later.   

 

3. Bilinear Hysteretic Model 

The relation between 
isoh  and the displacement 

depends on the displacement history. In general, all 

hysteresis loops are smooth except at the turning 

points. They can usually be characterized by 

skeleton curves (backbone curves). Under 

steady-state cyclic loadings, the hysteretic behavior 

for these models can be properly described using the 

criterion attributed to Masing. Masing criterion 

assumes that the unloading and reloading portion of 

a hysteresis loop take the same shape as the skeleton 

curve but with the scale expanded by a factor of two 

and the origin translated to the point of force 

reversal [22], as shown in Fig.2. The restoring force 

is a multi-valued function. However, it is mapped 

into a single-valued function through the application 

of skeleton curve. When a hysteretic structure is 

subjected to transient or cyclic loadings, rules such 

as those suggested by Jennings or Iwan can be 

employed to construct the hysteretic loops based on 

a chosen skeleton curve [22,23].  
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Fig.2 Hysteresis loops based on skeleton loading 

curve 

 

  The restoring force is discretized and expressed, 

after the first unloading, as 
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in which I  is the instant of most recent loading 

reversal, 
i

ix  and 
i

isox  are the displacement of 

i th-floor and isolation layer, respectively, at instant 

i  with .,.........1,  IIi and )(isof  is a function 

representing the skeleton curve which is assumed to 

be bilinear in this study. 

  When Eqs. (7)、(9) and (13) are substituted into 

Eq.(4), the governing equation of the isolation layer 

at instant i  becomes  
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At instant i = I , the above equation becomes 
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When Eq.(12) is substituted into Eq. (11) , it yields 
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The skeleton curve is characterized by three line 

segments with slopes of isoek  or isoyk  as 
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where D  denotes the yielding displacement and 

isob  the characteristic strength. When Eq. (14) is 

substituted into Eq. (13) , the governing equation can 

be rewritten as 
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where 
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Equations (15)~(17) are used to identify the 

parameters of the isolation layer. 

  Similarly, substituting Eqs.(4) (i.e. 
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identifying the damping coefficient and stiffness of 

the i +1-th floor as 
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and the error function for the 1i -th floor is 

defined as 
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Extremization of Eq.(21) with respect to the 

unknowns yields 
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With iC  and iK  derived already from the 

previous step, 1iC and 1iK  are obtained by 

solving Eq.(22) simultaneously for Nij ~1 . 

 

4. Numerical Example 

As an illustration to verify the proposed 

methodology for system identification of mid-story 

isolation buildings, a numerical example is 

considered using a 3-story shear building with a 

plane of mm 1010   and story height of 3m. The 

isolation layer consists of five LRB bearings, which 

locates between floor 1 and floor 2. The system 

parameters considered in the study include: (1) 

kgmmm 3

321 1032.58  and 

mMNKKK /06.168321   for the 

superstructure and substructure ； (2) 

kgmiso

31004.68  , 

kNbiso 25.245 , mMNkisoe /145.44 , and 
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mMNk isoy /867.6  for the isolation layer and 

LRB.  

Dynamic responses of the mid-story isolation 

building under the N-S component of the 1940 El 

Centro earthquake are calculated using Newmark’s 

linear acceleration method with a time-step of 

0.02sec. The acceleration responses contaminated 

with an artificial white noise signal of 5% 

noise-to-signal ratio are considered in the system 

identification analysis to simulate the measured data 

in a more realistic manner.  

Fig. 3 presents the nonlinear restoring force of 

isolation layer (LRBs) with a yielding displacement 

of 0.658 cm and a ductility ratio of 7.322. The 

force-displacement relationship of the story shear at 

the first floor and third floor are almost linear, as 

illustrated in Figs. 4 and 5.  
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Fig.3 Nonlinear restoring force of isolation layer 
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Fig.4 Restoring force and displacement of floor1 
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Fig.5 Restoring force and displacement of floor3 

 

In the first cycle of identification, the initial value 

of 1C  is set to be zero arbitrarily. The global 

measure-of-fit as a function of 
1K  is presented in 

Fig. 6, which reveals that the least squares estimate 

of 
1K  is mMN /160 . Then

1K  is fixed at this 

value and the minimization process is performed. As 

illustrated in Fig. 7, the optimal estimate of 1C  is 

mskN /.250 . In the meantime, the identified 

parameter values of isolation layer 

are mskNciso /.134 , kNbiso 44.236 , 

mMNkisoe /606.42 , mMNk isoy /656.6 . Then, 

substituting mskNC /.2501   and 

mMNK /1601   into Eq.(20) through the 

minimization process, the identified parameter 

values of floor2 are mskNC /.2252   and 

mMNK /92.1612  . Finally, the parameters of the 

3-th floor can be obtained in a similar manner. 

Application of the Eqs.(2) and (7) identified 

parameter values of floor3, the optimal estimate of 

3C  and 3K   are mskNC /.1783   and 

mMNK /94.1593  , respectively. We call this 

constitutes is one cycle of identification. 
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Fig.6 Global measure-of-fit in the first cycle 

setting mskNC /.01   
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      Fig.7 Global measure-of-fit in the first cycle 

setting mMNK /1601   

 

The second identification cycle is then proceeded. 

The initial value of 1C  is equal to mskN /.250 . 

Minimizing the global measure-of-fit, we 

have mMNK /1651  , Fig. 8. Numerical 

calculation suggests that three cycles of 

identification are sufficient. Column 2~5 and column 

6~7 in Table 1, respectively summarize the iterative 

identified parameter values of isolation layer and 

first floor. Similarly, columns 2~5 in Table 2 list the 

identified parameters of floor2 and floor3. In 

addition, the identified skeleton curve (backbone 

curve) of isolation layer is drawn in Fig. 9. It clearly 

indicates the application of Masing criterion. 

 

Table 1 Identified parameter of floor1 and isolation 

layer 

1 2 3 4 5 

Number 

of cycle 

isoc  

mskN /.  

isob  

kN  
isoyk  

mMN /  

isoek  

mMN /  

1 134 236.44 6.656 42.606 

2 143 242.07 6.795 43.716 

3 144 242.67 6.808 43.822 

True 

Value 

146 245.25 6.867 44.145 

EI 0.1144 

1 6 7 

Number 

of cycle 

1C  

mskN /.  

1K  

mMN /  

1 250 160.00 

2 270 165.00 

3 276 165.50 

True 

Value 

321 168.06 

EI 0.1794 
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Fig.8 Global measure-of-fit in the second cycle 

setting mskNC /.2501   

 

Table 2 Identified parameter of floor 2 and floor 3 
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1 2 3 4 5 

Number 

of cycle 

2C  

mskN /.  

2K  

mMN /  

3C  

mskN /.  

3K  

mMN /  

1 225 161.92 178 159.94 

2 270 165.65 247 164.64 

3 276 166.04 257 165.16 

True 

Value 

321 168.06 321 168.06 

EI 0.0855 0.1058 
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Fig.9 Identified skeleton curve of isolation layer 

 

The comparison between the identified and 

measured response is made. Figs. 10 and 11 show 

the acceleration and displacement responses of the 

floor1, respectively. The identified and measured 

ones are virtually identical. Similarly, the 

acceleration and displacement responses of the 

isolation layer and floor3 are presented in Figs. 

12-15, respectively. They also promise an excellent 

identification. 
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Fig.10 Comparison between identified and 

measured accelerations of floor 1 

 

0 5 10 15

Time ( sec )

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

D
is

p
la

c
e

m
e

n
t 

(m
) Floor1

Measured

Identified

 

Fig.11 Comparison between identified and 

measured displacements of floor1 
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Fig.12 Comparison between identified and 

measured accelerations of isolation layer 

 



航空技術學院學報  第十六卷  第一期（民國一○六年） 

 

118 

0 5 10 15

Time ( sec )

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

D
is

p
la

c
e

m
e

n
t 

(m
) Isolation layer (LRB)

Measured

Identified

 

Fig.13 Comparison between identified and 

measured displacements of isolation layer 
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Fig.14 Comparison between identified and 

measured accelerations of floor 3 
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Fig.15 Comparison between identified and 

measured displacements of floor 3 

 

5. Conclusions 

In this paper, a physical identification procedure 

of mid-story isolation buildings equipped with LRBs 

is developed. The hysteretic behavior of the 

nonlinear system is characterized by a backbone 

curve, by which the multivalued restoring force is 

transformed into a single-valued function; 

consequently, the system identification analysis of 

inelastic structures is greatly simplified. The 

feasibility of the proposed scheme is demonstrated 

using the numerical example of a 3-story shear 

building with isolation layer. Features of the 

proposed procedure include: 

(a) All physical parameters of the isolated system 

in terms of the bilinear stiffness and damping 

coefficients can be identified.  

(b) The system parameters are identified with 

reasonable accuracy in three iterations, even in 

the presence of noise contamination. The 

robustness of the algorithm makes it a 

favorable alternative for practical applications. 

(c) The proposed algorithm extracts the physical 

parameters of the system, which reveals the 

actual behavior of nonlinear systems more than 

does using modal parameters representing only 

equivalent linear systems. 
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